آنالیز روی برخی جبرهای باناخ-اورلیچ
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم
- author ابراهیم اکبربگلو
- adviser سعید مقصودی حسن پورمحمود آقابابا
- publication year 1392
abstract
فضاهای اورلیچ تعمیم فضاهای لبگ هستند. این فضاها را ریاضیدان لهستانی و. ر. اورلیچ در سال 1932 معرفی کرد. ایده ی اصلی فضاهای اورلیچ جایگزین کردن تابع توانی $|t|^p$ در تعریف فضاهای لبگ با یک تابع محدب دلخواه است. ریاضیدانان بسیاری این فضاها را از دیدگاه آنالیز تابعی مورد مطالعه قرار داده اند، برای مثال می توان به دو کتاب ارزشمند cite{kr} و cite{rr} اشاره کرد. اما از لحاظ آنالیز همساز پیشرفت چشمگیری در مورد ساختار فضاهای اورلیچ صورت نگرفته است. در سال 1965 اونیل برای اولین بار عملگر پیچش را برای این گونه فضاها بررسی کرد. در سال های 1985 و 1989 خوش تعریفی عمل پیچش روی فضاها ی اورلیچ وابسته به یک گروه آبلی و تابع یانگ پیوسته ی داده شده بررسی شده است. در سال های اخیر ش. وُنپ و ف. اِستِرُبین با استفاده از مفهوم تخلخل نتایج جالبی در مورد ضرب نقطه ای و پیچش در فضاهای لبگ بدست آورده اند. موضوع اصلی این پایان نامه تعمیم و گسترش این نتایج به فضاهای اورلیچ است. این پایان نامه مشتمل بر پنج فصل است. در فصل اول به بیان مقدمات و پیش نیازهای لازم می پردازیم. در این فصل در مورد توابع یانگ، فضاهای اورلیچ، نرم روی این فضاها و ویژگی های آن، ساختار دوگانِ فضاهای اورلیچ و مفهوم تخلخل، مطالبی به طور اجمال آورده شده است. در فصل دوم شرط های لازم و کافی برای این که فضای اورلیچ تحت ضرب نقطه ای به جبر باناخ تبدیل شود ارائه شده است. در فصل سوم ارتباط بین ساختار گروه توپولوژیک و خوش تعریفی عمل پیچش بین دو عضو دلخواه از یک فضای اورلیچ تحت شرایط کاملاً طبیعی روی تابع یانگ $phi$ آورده شده است. در فصل چهارم نیم ساده بودن و وجود همانی تقریبی کراندار در فضاهای اورلیچ مورد بررسی قرار گرفته است. سرانجام در فصل پنجم به ارائه ی نمایشی برای همریختی های -$l^phi(g)$مدول راست می پردازیم. به علاوه، ضربگرها روی فضاها ی $m^phi(g)$ را مشخص می کنیم.
similar resources
نگاشتهای نگهدارنده جفتهای عملگری باناخ روی جبرهای عملگری
فرض کنید $mathcal{B(X)}$ جبر شامل تمام عملگرهای خطی کراندار روی فضای باناخ $mathcal{X}$ و $phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر $A in mathcal{B(X)}$ و $x in mathcal{X}$، اسکالرهای $alpha , ...
full textجبرهای باناخ انقباض پذیر
فرض کنید یک جبر باناخ باشد. ما نشان می دهیم که اگر یک ایده ال انقباض پذیر ازیک جبر باناخ باشد آنگاه برقرار است. سپس وجود یک خود توان می نیمال مرکزی را در یک جبر باناخ انقباض پذیرکه یک تابعک ضربی نا صفر روی آن موجود باشد ثابت می کنیم. همچنین مفهومb- انقباض پذیری و یکی از فرم های معادل آن را معرفی می کنیم و با مثالی نشان می دهیم که b- انقباض پذیری به طور اکید از انقباض پذیری ضعیف تر است.
full textمرکز توپولوژیکی ضعیف از دوگان دوم جبرهای باناخ
در این مقاله برای اولین بار مفهوم جدیدی به عنوان مرکز توپولوژیکی ضعیف چپ و راست برای دوگان دوم جبرهای باناخ a ، را تعریف کرده و رابطۀ آن را با آرنز منظم پذیری بررسی می کنیم.
full textضربگرهای فشرده روی برخی از جبرهای باناخ
برای گروه فشردهg دوگان جبرهای باناخ متشکل از توابع کراندار اساسی که در بینهایت صفر می شوند را مورد مطالعه قرار می دهیم.ضربگرهای فشرده روی این دوگانهارابررسی کرده وثابت می کنیم وجودیک ضربگر چپ فشرده روی این دوگان هابا فشردگی گروه g معادل است.همجنین رده ی عناصر به طورکامل پیوسته چپ این دوگان ها راتوصیف می کنیم. دوگان جبرهای نیم گروهی را برای ردهی وسیعی از نیم گروه های فشرده موضعی s تحت توپولوژی ...
15 صفحه اولآنالیز روی حاصلضرب های خاص از جبرهای باناخ
در این پایان نامه ضرب ?-لاتو را روی a*b که در آن a و b دو جبر باناخ و ? یک تابعک خطی ضربی ناصفر روی b است تعریف می کنیم. a*b همراه با این ضرب تشکیل یک جبر می دهد که آن را با نماد a*?b نشان می دهیم و به بررسی برخی از خواص این جبر و مقایسه آنها با موارد مشابه روی جبرهای a و b می پردازیم. در ادامه نرم های a-محدب و m- محدب را روی جبرهای جا به جایی مطالعه می کنیم و ضمن معرفی نرم عملگری ؟؟؟؟؟ با مقای...
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023